Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 9 கணங்கள், தொடர்புகள் மற்றும் naசார்புகள் Ex 9.4 Textbook Questions and Answers, Notes.
TN Board 11th Maths Solutions Chapter 9 கணங்கள், தொடர்புகள் மற்றும் சார்புகள் Ex 9.4
பின்வருவனவற்றின் மதிப்பைக் காண்க.
Question 1.
\(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{7 x}\) என்க
தீர்வு :
\(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{7 x}=\lim _{x \rightarrow \infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{7}\)
\(\frac{1}{x}\) = t என்க
x → ∞ எனில், \(\frac{1}{x}\) → 0 ஆகும்.
∴ \(\frac{1}{x}\) → 0 எனில், t → 0 ஆகும்
∴ \(\lim _{t \rightarrow 0}\left[(1+t)^{\frac{1}{t}}\right]^{7}\) = e7 [∵ \(\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}\) = e]
∴ \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{7 x}\) = e7
Question 2.
\(\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{3 x}}\)
தீர்வு :
\(\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{3 x}}\) = \(\left[\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{x}}\right]^{\frac{1}{3}}\) = e\(\frac{1}{3}\)
[∵ \(\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{x}}\) = e]
Question 3.
\(\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{\frac{m}{x}}\)
தீர்வு :
\(\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{\frac{m}{x}}\)
\(\frac{1}{x}\) = t என்க
∴ \(\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{\frac{m}{x}}\) = \(\lim _{\frac{1}{x} \rightarrow 0}\) (1 + kt)mt
= \(\lim _{t \rightarrow 0}\) (1 + 0)m(0) = \(\lim _{t \rightarrow 0}\) 10 = 1
Question 4.
\(\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+3}{2 x^{2}+5}\right)^{8 x^{2}+3}\)
தீர்வு :
= \(e^{-8} \lim _{x \rightarrow \infty} \frac{x^{2^{2}}\left(8+\frac{3}{x^{2}}\right)}{x^{2}\left(8+\frac{20}{x^{2}}\right)}\)
= \(e^{-8} \lim _{x \rightarrow \infty}\left(\frac{8+\frac{3}{x^{2}}}{8+\frac{20}{x^{2}}}\right)\) [ ∵ x → ∞ எனில் \(\frac{1}{x}\) → 0]
Question 5.
\(\lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x+2}\)
தீர்வு :
\(\lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x+2}\) = \(\lim _{x \rightarrow \infty}\) (1 + \(\frac{3}{x}\))x . (1 + \(\frac{3}{x}\))2
= \(\lim _{x \rightarrow \infty}\) (1 + \(\frac{3}{x}\))x . \(\lim _{x \rightarrow \infty}\) (1 + \(\frac{3}{x}\))2
= e3 . \(\lim _{\frac{1}{x} \rightarrow 0}\)(1 + \(\frac{3}{x}\))2
[∵ \(\lim _{x \rightarrow \infty}\) (1 + \(\frac{k}{x}\))x = ek]
= e3 . (1) = e3
Question 6.
\(\lim _{x \rightarrow 0} \frac{\sin ^{3}\left(\frac{x}{2}\right)}{x^{3}}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{\sin ^{3}\left(\frac{x}{2}\right)}{x^{3}}\) = \(\lim _{x \rightarrow 0} \frac{\sin ^{3}\left(\frac{x}{2}\right)}{\frac{x^{3}}{8} \times 8}\)
= \(\frac{1}{8} \lim _{x \rightarrow 0} \frac{\sin ^{3} \frac{x}{2}}{\left(\frac{x}{2}\right)^{3}}\)
= \(\frac{1}{8} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{3}\)
= \(\frac{1}{8}\) × 13 = \(\frac{1}{8}\) [∵ \(\lim _{\frac{x}{2} \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}}\) = 1]
Question 7.
\(\lim _{x \rightarrow 0} \frac{\sin \alpha x}{\sin \beta x}\)
தீர்வு :
Question 8.
\(\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 5 x}\)
தீர்வு :
Question 9.
\(\lim _{\alpha \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{(\sin \alpha)^{m}}\)
தீர்வு :
\(\lim _{\alpha \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{(\sin \alpha)^{m}}\)
நிலை (i): m = n ஆக இருந்தால்
நிலை (ii) m > n ஆக இருந்தால்
\(\lim _{\alpha \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{(\sin \alpha)^{m}}\) = \lim _{\alpha \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{\alpha^{n}} \times \frac{\alpha^{n}}{\frac{(\sin \alpha)^{m} \cdot \alpha^{m}}{\alpha^{m}}}
= \(\left(\lim _{\alpha^{n} \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{\alpha^{n}}\right) \cdot \frac{\alpha^{n}}{\alpha^{m}} \cdot \frac{1}{\left(\lim _{\alpha \rightarrow 0} \frac{\sin \alpha}{\alpha}\right)^{m}}\)
= 1 . αn – m × 1 = αn – m = 0 (∵ m > n)
நிலை (iii) m < n ஆக இருந்தால்
\(\lim _{\alpha \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{(\sin \alpha)^{m}}\) = \(\lim _{\alpha \rightarrow 0} \frac{\sin \alpha^{n}}{\alpha^{n}} \times \frac{\alpha^{n}}{\frac{(\sin \alpha)^{m}}{\alpha^{m}} \times \alpha^{m}}\)
= \(\lim _{\alpha^{n} \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{\alpha^{n}} \times \frac{\alpha^{n}}{\alpha^{m}} \times \frac{1}{\lim _{\alpha \rightarrow 0}\left(\frac{\sin \alpha}{\alpha}\right)^{m}}\)
= 1 × αn – m × 1 = \(\frac{1}{\alpha^{m-n}}\)
(∵ m < n, \(\lim _{\alpha \rightarrow 0} \frac{\sin \left(\alpha^{n}\right)}{(\sin \alpha)^{m}}\) → ∞)
Question 10.
\(\lim _{x \rightarrow 0} \frac{\sin (a+x)-\sin (a-x)}{x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{\sin (a+x)-\sin (a-x)}{x}\)
=
Question 11.
\(\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+a^{2}}-a}{\sqrt{x^{2}+b^{2}}-b}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+a^{2}}-a}{\sqrt{x^{2}+b^{2}}-b}\)
=
Question 12.
\(\lim _{x \rightarrow 0} \frac{2 \arcsin x}{3 x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{2 \arcsin x}{3 x}\) = \(\frac{2}{3}\) .
= \(\frac{2}{3}\) × 1 = \(\frac{2}{3}\)
Question 13.
\(\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}\)
தீர்வு :
Question 14.
\(\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}\)
தீர்வு :
Question 15.
\(\lim _{x \rightarrow 0} \frac{2^{x}-3^{x}}{x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{2^{x}-3^{x}}{x}\) = \(\lim _{x \rightarrow 0} \frac{2^{x}-1-3^{x}+1}{x}\)
= \(\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}-\frac{\left(3^{x}-1\right)}{x}\)
= \(\lim _{x \rightarrow 0}\left(\frac{2^{x}-1}{x}\right)-\lim _{x \rightarrow 0}\left(\frac{3^{x}-1}{x}\right)\)
= log 2 – log 3
= log (\(\frac{2}{3}\)) [∵ \(\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}\) = a]
∴ \(\lim _{x \rightarrow 0} \frac{2^{x}-3^{x}}{x}\) = log (\(\frac{2}{3}\))
Question 16.
\(\lim _{x \rightarrow 0} \frac{3^{x}-1}{\sqrt{x+1}-1}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{3^{x}-1}{\sqrt{x+1}-1}\)
= \(\lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)(\sqrt{x+1}+1)}{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}\)
= \(\lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)(\sqrt{x+1}+1)}{(x+1)-1}\)
= \(\lim _{x \rightarrow 0} \frac{3^{x}-1}{x} \cdot \lim _{x \rightarrow 0}(\sqrt{x+1}+1)\)
= log 3 . (2) = 2 log 3 = log 32 = log 9
Question 17.
\(\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{n x \sin 2 x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{n x \sin 2 x}\) = \(\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(2 \sin x \cos x)}\)
= \(\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x \cos x}\)
= \(\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x}\)
= \(\frac{1}{2}\) × 1 × \(\frac{1}{1}\) = \(\frac{1}{2}\) [∵ cos 0 = 1]
∴ \(\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{n x \sin 2 x}\) = \(\frac{1}{2}\)
Question 18.
\(\lim _{x \rightarrow \infty} x\left[3^{\frac{1}{x}}+1-\cos \left(\frac{1}{x}\right)-e^{\frac{1}{x}}\right]\)
தீர்வு :
\(\lim _{x \rightarrow \infty} x\left[3^{\frac{1}{x}}+1-\cos \left(\frac{1}{x}\right)-e^{\frac{1}{x}}\right]\)
Question 19.
\(\lim _{x \rightarrow \infty}\) {x[log(x + a) – log(x)]}
தீர்வு :
\(\lim _{x \rightarrow \infty}\) {x[log(x + a) – log(x)]}
= \(\lim _{x \rightarrow \infty}\) x . log (\(\frac{x+a}{x}\))
= \(\lim _{x \rightarrow \infty}\) xlog(1 + \(\frac{a}{x}\))
= \(\lim _{x \rightarrow \infty}\) \(\frac{\log \left(1+\frac{a}{x}\right) \times a}{\frac{1}{x} \times a}, \frac{1}{x}\) = y என்க
= a \(\lim _{y \rightarrow 0} \frac{\log (1+y)}{y}\) = a(1) = a
[∵ \(\lim _{y \rightarrow 0} \frac{\log (1+x)}{x}\) = 1]
Question 20.
\(\lim _{x \rightarrow \pi} \frac{\sin 3 x}{\sin 2 x}\)
தீர்வு :
Question 21.
தீர்வு :
Question 22.
\(\lim _{x \rightarrow 0} \frac{\sqrt{2}-\sqrt{1+\cos x}}{\sin ^{2} x}\)
தீர்வு :
Question 23.
\(\lim _{x \rightarrow 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\tan x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\tan x}\)
= \(\lim _{x \rightarrow 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\tan x}\) × \(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}}\)
(தொகுதி, பகுதியை \(\sqrt{1+\sin x}+\sqrt{1-\sin x}\) ஆல் பெருக்க)
Question 24.
\(\lim _{x \rightarrow \infty}\left(\frac{x^{2}-2 x+1}{x^{2}-4 x+2}\right)^{x}\)
தீர்வு :
Question 25.
\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x}\) = \(\lim _{x \rightarrow 0} \frac{e^{x}-1-e^{-x}+1}{\frac{\sin x}{x} \times x}\)
= \(\lim _{x \rightarrow 0} \frac{\frac{e^{x}-1}{x}-\frac{\left(e^{-x}-1\right)}{x}}{\frac{\sin x}{x}}\)
= \(\frac{\left(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}\right)-\left(\lim _{x \rightarrow 0} \frac{e^{-x}-1}{x}\right)}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}\)
(∵ \(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}\) = 1)
= \(\frac{1-(-1)}{1}=\frac{2}{1}\) = 2
Question 26.
\(\lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}\) = \(\lim _{x \rightarrow 0} \frac{e^{a x}-1-e^{b x}+1}{x}\)
= \(\left(\lim _{x \rightarrow 0} \frac{e^{a x}-1}{a x} \times a\right)\) – \(\left(\lim _{x \rightarrow 0} \frac{e^{b x}-1}{b x} \times b\right)\)
= log a – log b = log(\(\frac{a}{b}\))
Question 27.
\(\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{x^{3}}\)
தீர்வு :
Question 28.
\(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}\)
தீர்வு :
\(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}\)