Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5

You can Download Samacheer Kalvi 12th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

Tamilnadu Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5

Question 1.
Find the value, if it exists. If not, give the reason for non-existence.
(i) sin-1(cos π)
(ii) \(\tan ^{-1}\left(\sin \left(-\frac{5 \pi}{2}\right)\right)\)
(iii) sin-1[sin 5]
Solution:
(i) sin-1(cos π) = sin-1(-1) = \(-\frac{\pi}{2}\)
(ii) \(\tan ^{-1}\left(\sin \frac{5 \pi}{2}\right)=\tan ^{-1}\left(-\sin \frac{\pi}{2}\right)=\tan ^{-1}(-1)=-\frac{\pi}{4}\)
(iii) sin-1(sin 5) = sin-1[sin (5 – 2π)] = 5 – 2π

Question 2.
Find the value of the expression in terms of x, with the help of a reference triangle.
(i) sin(cos-1(1 – x))
(ii) cos(tan-1(3x – 1))
(iii) \(\tan \left(\sin ^{-1}\left(x+\frac{1}{2}\right)\right)\)
Solution:
(i) Let cos-1(1 – x) = θ
1 – x = cos θ
We know sin2 θ = 1 – cos2 θ
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q2
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q2.1

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5

Question 3.
Find the value of
(i) \(\sin ^{-1}\left(\cos \left(\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)\right.\)
(ii) \(\cot \left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{4}{5}\right)\)
(iii) \(\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)\)
Solution:
(i) \(\sin ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{3} \text { and } \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \text { and }\)
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q3
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q3.1

Question 4.
Prove that
(i) \(\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}\)
(ii) \(\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{12}{13}=\sin ^{-1} \frac{16}{65}\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q4
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q4.1

Question 5.
Prove that tan-1 x + tan-1 y + tan-1 z = tan-1 \(\left[\frac{x+y+z-x y z}{1-x y-y z-z x}\right]\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q5

Question 6.
If tan-1 x + tan-1 y + tan-1 z = π, show that x + y + z = xyz.
Solution:
Given tan-1 x + tan-1 y + tan-1 z = π
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q6

Question 7.
Prove that \(\tan ^{-1} x+\tan ^{-1} \frac{2 x}{1-x^{2}}=\tan ^{-1} \frac{3 x-x^{3}}{1-3 x^{2}},|x|<\frac{1}{\sqrt{3}}\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q7

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5

Question 8.
Simplify: \(\tan ^{-1} \frac{x}{y}-\tan ^{-1} \frac{x-y}{x+y}\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q8

Question 9.
Find the value of
(i) \(\sin ^{-1} \frac{5}{x}+\sin ^{-1} \frac{12}{x}=\frac{\pi}{2}\)
(ii) \(2 \tan ^{-1} x=\cos ^{-1} \frac{1-a^{2}}{1+a^{2}}-\cos ^{-1} \frac{1-b^{2}}{1+b^{2}}\), a > 0, b > 0
(iii) 2 tan-1(cos x) = tarn-1 (2 cosec x)
(iv) cot-1 x – cot-1 (x + 2) = \(\frac{\pi}{12}\), x > 0
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q9
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q9.1
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q9.2
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q9.3

Question 10.
Find the number of solution of the equation tan-1(x – 1) + tan-1 x + tan-1 (x + 1) = tan-1(3x).
Solution:
tan-1(x – 1) + tan-1 x + tan-1 (x + 1) = tan-1(3x)
tan-1(x – 1) + tan-1 (x + 1) = tan-1 3x – tan-1 x
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Q10
LHS = RHS
⇒ \(\tan ^{-1} \frac{2 x}{2-x^{2}}=\tan ^{-1} \frac{2 x}{1+3 x^{2}}\)
⇒ \(\frac{2 x}{2-x^{2}}=\frac{2 x}{1+3 x^{2}}\)
⇒ 2 – x2 = 1 + 3x2
⇒ 4x2 = 1
⇒ x2 = \(\frac{1}{4}\)
⇒ x = ±\(\frac{1}{2}\)
So, the equation has 2 solutions.

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 Additional Questions

Question 1.
Solve the following equation: sin-1(1 – x) – 2 sin-1 x = \(\frac{\pi}{2}\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 1

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5

Question 2.
Solve: tan-1 2x + tan-1 3x = \(\frac{\pi}{4}\)
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 2

Question 3.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 3
Solution:
Do it yourself

Question 4.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 4
Solution:
Do it yourself

Question 5.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 5
Solution:
Do it yourself

Question 6.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 6
Solution:
Do it yourself

Question 7.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 7
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 8

Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5

Question 8.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 9
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 10

Question 9.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 11
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 12
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 13

Question 10.
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 14
Solution:
Samacheer Kalvi 12th Maths Solutions Chapter 4 Inverse Trigonometric Functions Ex 4.5 15