You can Download Samacheer Kalvi 9th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

## Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 2 Real Numbers Ex 2.2

**9th Maths Exercise 2.2 Samacheer Kalvi Question 1.**

Express the following rational numbers into decimal and state the kind of decimal expansion.

(i) \(\frac { 2 }{ 7 }\)

(ii) \(-5 \frac{3}{11}\)

(iii) \(\frac { 22 }{ 3 }\)

(iv) \(\frac { 327 }{ 200 }\)

Solution:

(i) \(\frac { 2 }{ 7 }\)

\(\frac{2}{7}=0 . \overline{285714}\)

Nen-terminating and recurring

(ii) \(-5 \frac{3}{11}\)

\(-5 \frac{3}{11}=-5 . \overline{27}\)

Nen-terminating and recurring

(iii) \(\frac { 22 }{ 3 }\)

\(\frac{22}{3}=7 . \overline{3}\)

Nen-terminating and recurring

(iv) \(\frac { 327 }{ 200 }\)

\(\frac { 327 }{ 200 }\) = 1.635, Terminating.

**9th Maths Exercise 2.2 In Tamil Question 2.**

Express \(\frac { 1 }{ 13 }\) in decimal form. Find the length of the period of decimals.

Solution:

\(\frac{1}{13}=0 . \overline{076923}\) has the length of the period of decimals = 6.

**9th Standard Maths Exercise 2.2 Question 3.**

Express the rational number \(\frac { 1 }{ 13 }\) in recurring decimal form by using the recurring decimal expansion of \(\frac { 1 }{ 11 }\) . Hence write \(\frac { 71 }{ 33 }\) in recurring decimal form.

Solution:

The recurring decimal expansion of \(\frac { 1 }{ 11 }\) = 0.09090909…. = \(0.\overline { 09 }\)

**Maths 9th Class Chapter 2 Real Numbers Question 4.**

Express the following decimal expression into rational numbers.

(i) \(0.\overline { 24 }\)

(ii) \(2.\overline { 327 }\)

(iii) -5.132

(iv) \(3.1\overline { 7 }\)

(v) \(17.\overline { 215 }\)

(vi) \(-21.213\overline { 7 }\)

Solution:

(i) \(0.\overline { 24 }\)

Let x = \(0.\overline { 24 }\) = 0.24242424……… ….(1)

(Here period of decimal is 2, multiply equation (1) by 100)

100x = 24.242424 ………. ….(2)

(2) – (1)

100x – x = 24.242424…. – 0.242424….

99x = 24

x = \(\frac { 24 }{ 99 }\)

(ii) \(2.\overline { 327 }\)

Let x = 2.327327327…… …………. (1)

(Here period of decimal is 3, multiply equation (1) by 1000)

1000x = 2327.327… ……………. (2)

(2) – (1)

1000x – x = 2327.327327… – 2.327327….

999x = 2325

x = \(\frac { 2325 }{ 999 }\)

(iii) -5.132

\(x=-5.132=\frac{-5132}{1000}=\frac{-1283}{250}\)

(iv) \(3.1\overline { 7 }\)

Let x = 3.1777 ……. ………… (1)

(Here the repeating decimal digit is 7, which is the second digit after the decimal point, multiply equation (1) by 10)

10x = 31.7777 …….. …………. (2)

(Now period of decimal is 1, multiply equation (2) by 10)

100x = 317.7777…….. …………….. (3)

(3) – (2)

100x – 10x = 317.777…. – 31.777….

90x = 286

\(x=\frac{286}{90}=\frac{143}{45}\)

(v) \(17.\overline { 215 }\)

Let x = 17.215215 ……. ………. (1)

1000x = 17215.215215…… …………. (2)

(2) – (1)

1000x – x = 17215.215215… – 17.215…

999x = 17198

x = \(\frac { 17198 }{ 999 }\)

(vi) \(-21.213\overline { 7 }\)

Let x = -21.2137777… ……….. (1)

10x = -212.137777…… ……….. (2)

100x = -2121.37777…… ………… (3)

1000x = -21213.77777…. ……….. (4)

10000x = 212137.77777….. ………… (5)

(Now period of decimal is 1, multiply equation (4) it by 10)

(5) – (4)

10000x – 1000x = (-212137.7777…) – (-21213.7777…)

9000x = -190924

x = –\(\frac { 190924 }{ 9000 }\)

**Class 9 Maths Chapter 2 Real Numbers Question 5.**

Without actual division, find which of the following rational numbers have terminating decimal expansion.

(i) \(\frac { 7 }{ 128 }\)

(ii) \(\frac { 21 }{ 15 }\)

(iii) 4\(\frac { 9 }{ 35 }\)

(iv) \(\frac { 219 }{ 2200 }\)

Solution:

(i) \(\frac { 7 }{ 128 }\)

So \(\frac{7}{128}=\frac{7}{2^{7} 5^{0}}\)

This of the form 4m, n ∈ W

So \(\frac { 7 }{ 128 }\) has a terminating decimal expansion.

(ii) \(\frac { 21 }{ 15 }\)

So \(\frac { 21 }{ 15 }\) has a terminating decimal expansion.

(iii) 4\(\frac { 9 }{ 35 }\) = \(\frac { 149 }{ 35 }\)

\(\frac{49}{35}=\frac{149}{5^{1} 7^{1}}\)

∴ This is not of the form \(\frac{p}{5^{1} 7^{1}}\)

So 4\(\frac { 9 }{ 35 }\) has a non-terminating recurring decimal expansion.

(iv) \(\frac { 219 }{ 2200 }\)

\(\frac{219}{2200}=\frac{219}{2^{3} 5^{2} 11^{1}}\)

∴ This is not of the form \(\frac{p}{2^{m} 5^{n}}\)

So \(\frac { 219 }{ 2200 }\) has a non-terminating recurring decimal expansion.